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1 SUMMARY  

1.1 ABOUT THE EVALUATION 

In August 2021 the Metropolitan Police Service (MPS) was awarded Home Office Science 

Technology Analysis & Research funding to undertake testing of the accuracy and 

equitability of Facial Recognition in an operational environment for three policing use cases: 

• Live Facial Recognition (LFR) 

• Retrospective Facial Recognition (RFR) 

• Operator Initiated Facial Recognition (OIFR) 

The National Physical Laboratory (NPL) was invited to submit a proposal and plan to 

conduct such an evaluation for MPS and South Wales Police (SWP), and a contract was 

awarded at the end of 2021. 

The NPL test strategy [1] for an evaluation conformant with the standards 

ISO/IEC 19795-1 [2] and ISO/IEC 19795-2 [3] for biometric testing and reporting was agreed 

in April 2022. Noteworthy aspects addressed in the evaluation include: 

1:N identification: The operational use cases evaluated use facial recognition for 1:N 

identification (rather than 1:1 verification). 

Face in video: Live Facial Recognition involves identification of faces in live video.  

Real time processing: Live Facial Recognition must operate in real time; the recognition 

decision must be given within seconds of the subject being videoed. To achieve this 

when there are many people in the field of view to be recognised, the algorithms may 

need to limit the number of faces processed per video frame or limit the number of 

video frames being processed.  

Operational environment and settings: The evaluation uses face image and video data 

collected in the operational environment under operational settings. 

Accuracy, demographic variation & equitability: The evaluation measures the accuracy 

of facial recognition, the variations in accuracy between different demographics, and 

assesses equitability, i.e., whether outcomes are broadly equivalent across 

demographics under operational use case settings.  

Under 18’s: The age range of the policing applications extends to those below age 18, and it 

is important to know whether performance is different for this demographic.  

Large demographically balanced datasets: The testing of low error rates in a statistically 

significant manner requires large datasets. To achieve the required scale, the 

evaluation uses a supplementary reference image dataset of 178,000 face images 

(Filler dataset). This is an order of magnitude larger than the typical watchlist size of 

an operational Live Facial Recognition deployment. To avoid introducing a 

demographic bias due to reference dataset composition, a demographically balanced 

reference dataset was used, with equal numbers in each demographic category. For 

assessment of equitability under operational settings, the results from the large 

dataset are appropriately scaled to the size and composition of watchlist or reference 

image database of the operational deployment.  
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Data collection for the evaluation took place in July and August 2022 alongside five MPS 

and SWP operational deployments of Live Facial Recognition in London and Cardiff. A set of 

facial photographs were taken of a Cohort of subjects in a variety of settings. These Cohort 

subjects were seeded into the crowd flow to appear in the LFR video. Cohort subjects were 

not included on the operational deployment watchlists: an imperative to avoid interrupting the 

policing operation (and to reflect the safeguards of the data protection impact assessments 

regarding accurate data processing). Instead, the operational LFR video footage featuring 

the Cohort was saved to be re-played offline against the evaluation’s Cohort and Filler 

watchlists at a later date. 

The facial recognition technology and version tested is NEC Neoface V4 1 using HD5 Face 

Detector. These facial detection and recognition algorithms are those currently used by 

MPS and SWP for Live Facial Recognition, Retrospective Facial Recognition and Operator 

Initiated Facial Recognition. 

The offline running of the data using the Neoface system emulating operational use, and our 

analyses of performance have taken place from September to November 2022. 

This report sets out the findings of our evaluation, and is organised as follows: 

• In the remainder of this section, we highlight some of the key findings of the study. 

• Section 2 summarises the objectives of the evaluation. 

• Section 3 provides details of the demographics assessed in the evaluation. 

• Section 4 elaborates on criteria for equitability, and statistical significance of 

performance differences. 

• Section 5 outlines the methodology, the image and video data collected for the 

evaluation and how it was used. 

• Section 6 gives evaluation results for Retrospective Facial Recognition. 

• Section 7 gives evaluation results for Operator Initiated Facial Recognition. 

• Section 8 gives evaluation results for Live Facial Recognition. 

• Section 9 provides further discussion on some of the findings and notes aspects that 

may be worthy of further testing or analysis. 

• Section 10 provides a glossary of terms and abbreviations. 

1.2 KEY FINDINGS – RETROSPECTIVE FACIAL RECOGNITION 

Retrospective Facial Recognition is a post-event use of facial recognition technology, which 

compares still images of faces of unknown subjects against a reference image database in 

order to identify them. For each identification search the system returns a candidate list of 

the records in the reference image database that best match the submitted probe image. 

The top R matches are returned for a pre-specified value R. 

Recognition accuracy for Retrospective Facial Recognition is measured in terms of: 

• True-Positive Identification Rate: TPIR(N, R, 0) - the proportion of ‘mated’ 

identification searches (i.e., where the subject has a record in the reference image 

database) that include the mated reference among the candidates returned. 

TPIR depends on the number of candidates to be returned (R), the number of records in the 

reference image database (N). No face-match threshold is used in RFR. 

 
1 https://www.necsws.com/facial-recognition-software  

https://www.necsws.com/facial-recognition-software
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1.2.1 In the evaluation, RFR always returned the correct reference identifier at Rank 1 

For every probe image submitted for RFR in the evaluation, the correct reference identifier 

was returned at Rank 1 (i.e., as the top match). This is the best performance possible. 

 TPIR.RFR  178400, 1, 0  =  100 %. 

It follows that TPIR is identical for all demographic subgroups, and with no demographic 

performance variation in TPIR, performance is equitable.  

1.3 KEY FINDINGS – OPERATOR INITIATED FACIAL RECOGNITION  

Operator Initiated Facial Recognition is a near-real-time use of facial recognition technology, 

where an officer takes a photograph of a subject via a mobile device and submits it for 

immediate search against a reference image database. For each identification search the 

system returns a short candidate list of the records in the reference image database that 

best match the submitted probe image. 

Recognition accuracy for Operator Initiated Facial Recognition is measured in terms of: 

• True-Positive Identification Rate: TPIR(N, R, 0) – the proportion of mated 

identification searches (where the subject has a record in the reference image 

database) that include the mated reference among the candidates returned. 

1.3.1 In the evaluation, OIFR always returned the correct reference at Rank 1 

For every probe image submitted for OIFR in the evaluation, the correct reference identifier 

was returned at Rank 1 (i.e., as the top match). This is the best performance possible. 

 TPIR OIFR  178400, 1, 0  =  100 %. 

It follows that TPIR is identical for all demographic subgroups, and with no demographic 

performance variation in TPIR, performance is equitable.  

1.4 KEY FINDINGS – LIVE FACIAL RECOGNITION 

Live Facial Recognition (LFR) compares a live camera video feed of faces against a 

predetermined watchlist to find a possible match that generates an alert. 

The recognition accuracy of Live Facial Recognition is measured in terms of: 

• True-Positive Identification Rate (TPIR) – the rate of successful recognition when 

subjects on the watchlist pass through the zone of recognition  

• False-Positive Identification Rate (FPIR) – the rate of incorrect recognition (i.e., false 

positives or false alerts) when subjects not on the watchlist pass through the zone of 

recognition. 

TPIR is sometimes referred to as the True Recognition Rate, and FPIR as the False Alert 

Rate.  

TPIR and FPIR depend on the face-match threshold setting of the LFR system. FPIR and, to 

a lesser extent TPIR, also depend on the number of face images on the watchlist – the 

number of facial comparisons per subject passing through the zone of recognition, and the 

potential for a false positive, increases with watchlist size.  
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1.4.1 A substantial improvement in Live Facial Recognition accuracy  

Our tests encompass a range of watchlist sizes and face-match thresholds. For summarising 

operational performance, we use a face-match threshold of 0.6 which is the default setting of 

the Neoface facial recognition software. We provide performance figures for two different 

watchlist sizes: (i) a watchlist of 10,000 reference images, which is close to the size of that 

previously used in MPS LFR deployments and (ii) a watchlist of 1000 reference images, a 

size more typical of SWP LFR deployments. 

At these settings, combining the data from all five deployments: 

Watchlist size 10,000 

• TPIR 10000, 1, 0.6 = 89 % 

• FPIR 10000, 0.6 ≈ 0.017 % (1 in 6000) 

Watchlist size 1000 

• TPIR 1000, 1, 0.6 = 89 % 

• FPIR 1000, 0.6  0.002 % (1 in 60,000) 

These accuracy levels are a considerable improvement on that reported [4] for previous 

versions of the Neoface software. At that time, with watchlist size between 2000 and 4000, 

averaged over four deployments, TPIR  72 % and FPIR  0.1 % (1 in 1000). 

1.4.2 The range of variation in True Positive Identification Rate due to demographic effects 

was the same as that due to environmental effects 

At a face-match threshold of 0.6, the variation in TPIR due to demographics of the Test 

Cohort ranged from a TPIR of 83 % to TPIR of 93 %. The extent of this variation was the 

same as that due to environmental effects (ranging from TPIR of 83 % to 94 %).  

1.4.3 The observed variation in True Positive Identification Rate across gender and 

ethnicity was not statistically significant  

At face-match threshold 0.6, the ethnicity-gender group with the best TPIR was the 

Asian-Female group, and the poorest TPIR was for the Black-Female group. However, the 

observed differences in TPIR by gender, by ethnicity, and by ethnicity-gender combined 

were not statistically significant at the 0.05 significance level. (Statistical significance 

quantifies whether the observed performance difference is likely due to chance, or due to 

some underlying factor. Following convention, a 0.05 significance level was set prior to 

evaluation and analysis of results. Section 4.1 provides further detail on statistical 

significance.)  

1.4.4 Variation of True Positive Identification Rate between age groups 

At face-match threshold 0.6, the observed variation in TPIR for the different age groups was 

statistically significant, TPIR improving with subject age.  

The TPIR of 93 % for the oldest quartile (age 42 and over) is significantly higher than the 

TPIR of 89 % for those in the 20-to-41 age group.  

The TPIR of 83 % for the youngest quartile (the under 20’s) is significantly lower than the 

TPIR of 90 % for those aged 20 or over. However, it should be noted that the under-18 

portion of the Cohort all attended on the busiest day of the LFR deployments and that, when 

the zone of recognition was crowded, the TPIR worsened. The lower performance for the 

under 20’s is assessed to be due to both subject and environmental factors, these being a 

combination of subject age and as a result subject’s height, and crowdedness in the zone of 

recognition leading to shorter subjects being hidden by others from the camera’s field of 

view. 
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1.4.5 Demographic variation in False Positive Identification Rate is dependent on the face-

match threshold 

The LFR false positive cases against the 178,000 Filler image watchlist were analysed to 

determine any significant variation in FPIR between the gender, ethnicity and age 

demographic groups.  

At face-match threshold of 0.64 or higher, there were no false positive identifications, thus at 

this threshold the FPIR is identically 0.0 for all demographic groups.  

At face-match threshold of 0.62, only one Cohort subject had false positive identifications, 

and, at face-match threshold of 0.60, seven Cohort subjects had false positive 

identifications. In neither case is the imbalance between demographics statistically 

significant. 

False positive identifications increase at lower face-match thresholds of 0.58 and 0.56 and 

start to show a statistically significant imbalance between demographics with more Black 

subjects having a false positive than Asian or White subjects. 

1.4.6 Equitability  

Under the criteria we have set for equitability (see Section 4): 

• TPIR of the system at face-match threshold 0.6 is equitable across gender and 

ethnicity groups. 

• FPIR is equitable between gender and ethnicity and age at face-match threshold 0.6 

and above. 

• At face-match thresholds lower than 0.6 FPIR equitability will depend on settings of 

the operational deployment, including size and composition of the watchlist, and the 

number of crowd subjects passing through the zone of recognition during the 

deployment.  

Given our observations on the demographic variation in FPIR, we would recommend, 

where operationally possible, the use of a face-match of 0.6 or above to minimise the 

likelihood of any false positive and adverse impact on equitability.  

2 EVALUATION OBJECTIVES 

This report provides the results of an evaluation of accuracy and equitability of facial 

recognition technology in three operational use-cases: 

• Live Facial Recognition2 (LFR) compares a live camera video feed of faces against 

a predetermined watchlist to find a possible match that generates an alert. 

• Retrospective Facial Recognition (RFR) is a post-event use of facial recognition 

technology, which compares still images of faces of unknown subjects against a 

reference image database in order to identify them. 

• Operator Initiated Facial Recognition (OIFR) is a near-real-time use of facial 

recognition technology, where an officer takes a photograph of a subject via a mobile 

device and submits it for immediate search against a reference image database. 

 
2 In the study the processing of face image data to evaluate LFR, RFR and OIFR was all carried out 

retrospectively, and omitting any operator involvement in submitting individual images for an identification search, 
or in adjudication of candidate matches returned by the system. Nevertheless, we shall use the terms LFR and 
OIFR even though the processing was not ‘live’, or ‘operator initiated’ 
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The objectives of the evaluation are to assess the performance of facial recognition 

technology in an operational setting in terms of accuracy and equitability related to subject 

demographics, to add to Law Enforcement’s understanding on how their facial recognition 

algorithms perform, and to provide information on how best to configure FR technology for 

effective and fair deployment on operational use cases. 

The evaluation determines for each operational use case:  

• What is the accuracy of the facial recognition algorithms? 

Accuracy of LFR is measured in terms of the True Positive Identification Rate (TPIR) 

and False Positive Identification Rate (FPIR) as a function of the face-match 

threshold. Accuracies of RFR and OIFR are measured in terms of the True Positive 

Identification Rate (TPIR) as a function of the number of top matches returned. 

• Equitability is assessed through the consideration of the variations in accuracy for 

different demographic groups 

o What is the variation in accuracy between the demographic groups? 

o Are the variations in accuracy large enough to be statistically significant? 

o How do demographic variations in accuracy affect outcomes in the 

operational settings?  

• Are demographic performance variations similar over the different operational use 

cases? 

• Are variations in accuracy affected by environmental factors (such as location, crowd 

density, etc.) and system factors (such as algorithmic thresholds, and composition of 

watchlist or reference database)? 

The evaluation has also collected a ground-truth dataset the UK Law Enforcement 

Community can use for future testing of other facial recognition algorithms. 

3 DEMOGRAPHICS  

3.1 DEMOGRAPHIC CATEGORIES 

The demographic factors addressed in this evaluation are: (Self-defined) Ethnicity, Gender, 

Age and Height. 

3.1.1 Ethnicity 

The self-defined ethnicity of Cohort and Filler subjects was classified in accordance with the 

ONS 5+1 high-level ethnic groups [5]. For sourcing of Cohort subjects, for selection criteria 

of face images for the Filler reference dataset, and for analysis of performance the grouping 

of ethnicities used is:  

• ‘Asian or Asian British’ (Bangladeshi, Chinese, Indian, Pakistani, Other Asian)  

• ‘Black, Black British’ (African, Caribbean, Other Black) 

• ‘White’ (English, Welsh, Scottish, Northern Irish, Irish, Gypsy, Roma, Other White) 

We shall refer to these high-level groups as ‘Asian’, ‘Black’ and ‘White’ in this report. 

These three groups are the largest in the national population (White: 81%, Asian, 9.6%, 

Black 4.2% [5] ) and consequently the largest in the MPS and SWP custody records and of 

greatest relevance for policing operations. The remaining two high-level groups ‘Mixed or 

Multiple’ and ‘Other ethnic group’ were intentionally omitted in favour of having higher 

numbers of Cohort and Filler data for the demographic groups studied. 
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3.1.2 Gender 

Gender3 of the Cohort and Filler subjects was self-declared as Male or Female. 

3.1.3 Age 

To align with the Policing operational use cases for Facial Recognition, the study addressed 

a broad range of ages. Ages of Cohort subjects were self-declared.  

The agencies approached to provide Cohort subjects for the trial were asked (in addition to 

requirements for gender and ethnicity) to recruit from across the age range 18–65 plus, and 

to avoid over-representation in the older age ranges. To include under-18’s in the Cohort, 

NPL accepted the offer by MPS to provide Police Cadet volunteers of ages 12 to 18 for one 

of the deployments.  

The selection of Filler data drawn from MPS records is assumed to be representative of the 

overall subject age profile in the MPS custody records. In the final datasets, the age profile 

of Cohort and Filler was quite similar in terms of interquartile ranges. For analysis of the 

differences in performance between age groups, we divided Cohort subjects into quartiles by 

age, from the youngest quartile to the oldest quartile.  

3.1.4 Height 

Height data was recorded for the Cohort as it was thought possible that occlusion of one 

subject behind another could adversely affect face detection, and this would be a more likely 

occurrence for the shortest subjects than for the tallest.  

4 ASSESSING EQUITABILITY 

The evaluation is assessing facial recognition accuracy, variations in performance for 

different demographics, and equitability between demographics in operational systems. 

Demographic variation in accuracy performance may be more easily observable at settings 

outside the normal operational parameters, hence our use of a Filler dataset to allow a 

watchlist much larger than those of typical LFR deployments. However, equitability must be 

assessed at typical operational settings. 

For consideration of equitability in operational LFR deployments we hypothesise two 

watchlists of size and demographic composition to be typical for MPS and SWP operational 

deployments. The first has 10,000 face images, the second 1000 face images, and in both 

cases the composition of the watchlist can be expected to be proportional to the number of 

arrests in 2020/2021 by MPS and SWP respectively [6]. 

To scale results of larger watchlist (size c  N) to a smaller watchlist (size N) we note that, 

provided FPIR(N, T) is small: 

 TPIR(c  N, 1, T)  TPIR(N, 1, T) and 

 FPIR(c  N, T)  c  FPIR(N, T).   

Equitability between demographics requires that, in the operational setting, the outcomes for 

the subjects (i.e., recognition rates and false alert rates) should be broadly equivalent for 

demographics considered.  

 
3 Gender: classification as male, female or another category based on social, cultural or behavioural factors. 
(Gender is generally determined through self-declaration or self-presentation and may change over time.) 
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We cannot require exact equivalence as, even when there is no demographic variation in 

performance, due to the statistical nature of biometrics small deviations in observed 

performance must be expected. Thus, in assessing whether a system is equitable, criteria 

are needed for broad equivalence of performance figures. 

In this study we use the following criteria for determining equitability: 

a) The system is performing equitably if there is no variation in performance 

between demographic groups (e.g., when there are no false positives at the face-

match threshold applied).  

b) The system is performing equitably if the variation in performance between 

demographic groups is not statistically significant.  

c) The system is performing equitably if the variation in performance between 

demographics is inconsequential in the operational system (e.g., if there is 

virtually no difference in outcomes for the different demographics).  

4.1 STATISTICAL SIGNIFICANCE 

Statistical significance quantifies whether the observed performance difference is likely due 

to chance, or due to some underlying factor of interest. For testing of statistical significance 

in the evaluation, we use the conventional significance level 0.05 (5%).  

The significance level relates to the probability of falsely rejecting the ‘null’ hypothesis that 

there is no underlying difference in performance rates. 

Note that testing for performance variation over different demographic attributes involves 

multiple hypothesis tests. A multiplicity of tests each at 5% significance level can increase 

the probability of rejecting the null hypothesis to a value much higher than 5%. There are 

methods to address this issue by requiring stricter significance thresholds for each individual 

test (however this increases the chance of missing a demographic effect). Such methods 

were NOT applied in this evaluation. 

5 OUTLINE OF METHODOLOGY AND DATA 

The tests conducted emulate the operational LFR, RFR and OIFR use cases.  

A set of facial photographs were taken of a Cohort of subjects in a variety of settings 

including ‘Custody-style’ images captured in accordance with the Police Standard for Still 

Digital Image Capture of Facial Images [7]. The custody-style images were used for enrolling 

custody subjects onto a LFR watchlist, and facial image reference dataset for RFR and 

OIFR. 

Video featuring Cohort subjects was collected alongside an operational LFR deployment and 

so reflects typical operational conditions. The behaviour of Cohort subjects seeded into the 

crowd was also consistent with normal crowd behaviour (other than being under instruction 

to ensure that they did pass through the zone of recognition, and to have a barcode scanned 

after going through the zone of recognition to log timings, and to walk through the zone of 

recognition the requisite number of times).  

The following differences between the evaluation conditions and normal operational use 

should be noted. 
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a) For purposes of the evaluation, the watchlist used for testing of Live Facial 

Recognition was an order of magnitude larger than typical for an MPS LFR 

deployment. The watchlist contained nearly 180,000 face images, which is about 

20 times the size of any watchlist used operationally to date. The increased 

watchlist size was to help ensure there would be sufficient data on true and false 

positive alerts to draw meaningful (statistically significant) conclusions regarding 

demographic differences in performance.  

b) To address the purposes of the evaluation in assessing demographic variation in 

performance, the Filler and Cohort watchlists comprised an approximately equal 

number of face images for males and females of Asian, Black, and White 

ethnicities. In operational deployments the demographic balance of the watchlist 

would be different, and more likely to reflect the demographic balance in society, 

or of images in the MPS or SWP Custody Image Systems. 

c) The facial recognition algorithms were configured to run in a bulk processing 

mode without the need for operator involvement or interaction during the process. 

The volume of data makes it impractical to involve the operator in processing 

each image, though this might be the case in operational use of RFR or OIFR.  

d) In particular, the settings of the systems were not dynamically adjusted by test 

staff during running as conditions of facial images and video footage varied. 

e) There was no operator or test staff adjudication of candidate matches returned by 

the system; the effects of such adjudication are outside the scope of the study. 

f) The LFR video was not ‘live stream’ video but had been saved as mp4 files. At 

times, artefacts of compression were noticeable in the videos. Such artefacts can 

affect face image quality and may have had a negative impact on the accuracy of 

facial recognition compared with uncompressed video used for live deployments.  

5.1 COHORT DATA SUBJECTS 

A Cohort of test subjects meeting the demographic requirements for the study were recruited 

via acting extras agencies and an additional under-18 Cohort of test subjects were provided 

from MPS Police Cadet volunteers. 

We have used the demographic details that subjects provided when they completed our 

demographics form; in some cases this was different to that stated by the supplying agency. 

A summary of the details is shown in Table 1. The number and demographic mix of the 

Cohort data subjects is sufficient to test equitability between Male/Female gender, 

Asian/Black/White ethnicity, and Age groups. 

Table 1 — Summary of Cohort composition  

Cohort composition:  405 Data subjects 

  Female Male 

Self-defined ethnicity 
based on ONS 5+1 
codes 

Asian (A1, A2, A3, A4, A9) 53 45 

Black (B1, B2, B9) 60 51 

White (W1, W2, W3, W9) 84 86 

Mixed and Other 8 16 

Age  Age range 12 - 76 years 

Lower Quartile 20 years 

Median 30 years 

Upper Quartile 42 years 
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5.2 FACIAL IMAGES OF COHORT  

A set of facial photographs was taken of each Cohort subject alongside the MPS and SWP 

deployments of Live Facial Recognition. The photographs were taken in a variety of settings 

as summarised in Table 2. Measurement of RFR and OIFR accuracy is based on the Cohort 

probe and reference images as listed in the table. 

Table 2 — Summary of types of reference and probe images used in the study  

Image type Uses Camera / Location  Number of 
images 

Custody style4  

Image of the full head with all hair, neck, 

shoulders and ears.  

Subject facing square to the camera, 

looking directly at camera.  

Diffuse lighting to provide uniform 

illumination across the face without hot 

spots or shadows.  

Plain flat background with an 18% shade 

of grey.  

Enrolment of 

reference image 

for watchlist or 

reference image 

database  

 

Probe images 

for RFR 

Canon EOS850D 
Indoor 

686 

OIFR 

A facial image taken on a mobile phone 

(same model as used by SWP for OIFR). 

In cases where the image is out-of-focus, 

there is motion blur, or the subject’s eyes 

were closed a further image would be 

taken.  

Probe images 

for OIFR 

 

Probe images 

for RFR 

Samsung XcoverPro  
Indoor 

567 

Samsung XcoverPro 
Outdoor 
Some images at LFR 
location 

576 

Selfie  

Mobile phone image taken by Cohort 

subject.  

Subject permitted to pose as they wished 

for the photo.  

A neutral expression was not required, 

and the subject did not need to pose 

‘square to the camera’  

Probe images 

for RFR 

Motorola G(60)s 
Indoor 

570 

Motorola G(60)s 

Outdoor 

453 

Ad hoc digital camera image 

Camera image of the subject taken either 

inside or outside.  

Uncontrolled conditions and background. 

No flash or supplementary lighting. 

Some of the ad-hoc outdoor photos were 

taken at the LFR location.  

Probe images 

for RFR 

Nikon D40 

Indoor 

506 

Nikon 1 J5 

Outdoor  

Some images at LFR 

location 

582 

Note:  

Images taken with Cohort subject wearing facemasks are excluded.  

(Performance and equitability for subjects wearing facemasks not assessed in this study). 

 
4 Conformant to “Police Standard for Still Digital Image Capture and Data Interchange of Facial/Mugshot 

and Scar, Mark & Tattoo Images” Version 2, 2007 
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5.3 VIDEO FROM LIVE FACIAL RECOGNITION DEPLOYMENTS 

Measurement of LFR accuracy is based on the Cohort identification transactions (the 

‘recognition opportunities’ as Cohort subjects walk through the zone of recognition of the 

LFR system). Details of LFR deployments are shown in Table 3. 

Table 3 — Summary of LFR deployments with seeded Cohort subjects 

Date Location Duration  Estimated number 
of crowd subjects 

7 Jul 2022 London,   
Oxford Street 

7 hours 24000 

14 Jul 2022 London, 
Oxford Street 

8 hours 35000 

16 Jul 2022 London, 
Oxford Street 

8 hours 38000 

28 Jul 2022 London, 
Piccadilly Circus 

7 hours 28000 

13 Aug 2022 Cardiff, 
Queen Street 

4.5 hours 7000 

Weather conditions were quite similar during the five deployments, precluding analysis of 

weather effects. All days were bright and sunny, and several Cohort subjects wore sunhats 

and sunglasses in keeping with the conditions. August 13 was exceptionally hot (peak 

temperature: 33 °C). 

Video was collected from two camera systems spanning the zone of recognition of the LFR 

deployment except for the afternoon of 13 August when a single camera was used. 

The number of crowd subjects was estimated by taking a one-minute sample of each 30-

minute video and combining contemporaneous footage from both cameras. Staff counted 

the number of subjects walking towards the camera in each sample video to estimate the 

number of crowd subjects seen by the LFR camera per minute. Multiplying by 30 gives the 

number of crowd subjects for the pair of videos, and the daily estimate sums the numbers for 

that day’s videos. 

The estimated number of subjects per minute is also used as a measure of how congested 

the zone of recognition was at the times the Cohort recognition opportunities were recorded. 

(The actual numbers in the zone of recognition would need to take into account (i) that the 

crowd walks both towards and away from the camera, and (ii) the time duration it takes for 

someone in the crowd to move through the zone of recognition. When the zone of 

recognition was very busy, it took more time for subjects to walk through.  
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5.4 FILLER FACIAL IMAGES 

A Filler dataset was used to provide a large watchlist or reference dataset for evaluating 

LFR, RFR and OIFR performance. The demographic composition of the dataset is shown in 

Table 4. 

Table 4 — Summary of Filler facial image set  

Filler dataset from MPS holdings: ~ 178,000 facial images from ~ 116,000 
individuals 

 Female Male 

Self-defined 
ethnicity based on 
ONS 5+1 codes 

Asian (A1, A2, A3, A4, A9) ~ 30 000 ~ 30 000 

Black (B1, B2, B9) ~ 30 000 ~ 30 000 

White (W1, W2, W3, W9) ~ 30 000 ~ 30 000 

Age at date image 
taken 

Age Range5  Approx. 12 - 76 years 

Age Lower Quartile 22 years 

Age Median 31 years 

Age Upper Quartile 41 years 

The Filler dataset has approximately 180,000 face images: 30,000 for each of the 

Gender/Ethnicity groups shown. Approximately 2000 of the supplied images could not be 

enrolled at the default settings (e.g., those with a profile rather than frontal face image). We 

did not attempt to adjust the settings to enrol the failed cases; in previous deployments it has 

been observed that poor quality watchlist images were prone to increasing the incidence of 

false alerts.  

Each Filler image corresponds to a custody record, and the Filler dataset contains multiple 

images for some individuals who have multiple custody records. Guidance on watchlist 

composition [7] suggests that if multiple different images of a subject are available, 

consideration be given to including these in the watchlist to improve the likelihood of a 

match. Thus, the inclusion of multiple images for some individuals is not atypical of the 

operational use case.  

6 EVALUATION RESULTS – RETROSPECTIVE FACIAL RECOGNITION  

6.1 METHODOLOGY 

6.1.1 Comparison program 

To automate the testing of RFR and OIFR, NEC provided a programme to NPL’s 

specification that enabled batch processing of identification searches using the Neoface V4 

algorithm without requiring operator involvement. The program uses the Neoface facial 

recognition server to perform an identification search of each probe image in a specified 

directory against a reference image database or watchlist, and logs the identifiers of the 

returned candidates, and the corresponding comparison scores.  

6.1.2 Reference image database and Probe images  

The reference image dataset for RFR combines (i) an enrolled watchlist of Custody-style 

Cohort images, and (ii) the enrolled Filler dataset of custody images. 

 
5 Age range for Filler dataset taken as the 0.1% - 99.9% percentiles  
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The probe images used for RFR were the full set of facial images of the Cohort subjects 

collected in conjunction with the LFR deployments. The image types are listed in Table 2.  

To facilitate the use of the matching programme, the collected images were cropped and 

downsized. Cropping was necessary as the programme for batch processing cannot handle 

cases where multiple faces appear within an image. The Neoface system itself can handle 

this situation, but the process requires operator interaction in selecting the faces of interest. 

Some of the face images were cropped quite tightly to avoid other nearby faces in the 

background. 

Given the size of the Filler dataset, there was a chance that a Cohort subject could also 

feature in the Filler dataset. This could risk a correct match between Cohort subject and their 

Filler image being counted as a false positive. (It would also complicate handling of any 

Cohort requests to have their data removed from the evaluation datasets.) The issue was 

addressed by checking cases where a Cohort-to-Filler comparison score was beyond the 

typical range for ‘non-mated comparisons’ and within the range for ‘mated comparison’. In 

such cases if the Cohort and Filler metadata agree the Filler image would be removed from 

the Filler datasets. Six checks were made, and four Filler subjects were removed. 

6.1.3 Running RFR  

For RFR the matching process was configured to return for each probe the comparison 

score and candidate ID of the top 200 matches in the reference image database. (This would 

allow reporting of the RFR TPIR for the correct reference being returned with the top R 

matches for R = 1 to R = 200 as per the test strategy). 

6.2 ACCURACY  

For every probe image submitted for RFR, the correct reference was returned at Rank 1 

(i.e., as the top match). This is the best possible performance6. 

TPIRRFR 178400, 1, 0 = 100 %. 

It follows that TPIR is identical at 100 % for all demographic subsets of the submitted probe 

images and, with no demographic variation in TPIR, the performance is equitable. 

It also follows that TPIR178400, 1, 0 = 100 % for all the different types of probe image, and in 

particular the images taken with the OIFR device. 

The result also suggests that in the operational use of RFR, the number of top-matching 

candidates returned for operator adjudication could be somewhat smaller than 200 (say 10 

rather than 200). 

6.3 LOW SCORING MATED COMPARISONS & HIGH-SCORING NON-MATED 

COMPARISONS 

Excluding matches between identical twins (addressed in Section 6.4), in the full set of RFR 

identification searches the highest non-mated comparison score was 0.653, and there were 

ten non-mated comparison scores above 0.60 (arising from probes images of four Cohort 

subjects). The probes of one Cohort subject had matches above score 0.6 against five 

different Filler subjects. This particular Cohort subject is clearly an outlier, but we have not 

 
6 All probes are recognised at Rank 1, and therefore no breakdown is given by subset for different image types, 
different Cohort demographics, different rank values.  
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been able to isolate a specific reason behind this anomaly. (In biometric systems it is not 

uncommon that a few subjects are more prone to false-matches than others [8]).  

Thirteen RFR identification searches (out of approximately 4000) returned mated 

comparison score below the 0.653 highest non-mated score. The probe images in these 

cases generally met configured face detection parameters but were less than ideal. Typical 

issues being reflections in glasses, shadows over the eyes, glasses’ frames over the eyes. 

Despite these issues the subjects were still correctly recognised at Rank 1. 

There is no fixed face-match threshold at which in all mated identification searches the 

correct reference is returned at Rank 1, and any non-mated identification search would 

return zero matches.  

6.4 IDENTICAL TWINS  

In the Cohort there was a pair of identical twins; identical twins are known to be a 

challenging case for facial recognition. In the running of RFR and OIFR each twin was 

always correctly recognised at Rank 1, and their sibling was returned as the Rank-2 

candidate. The non-mated comparison scores between the identical twins were 

(unsurprisingly) higher than that usual for non-mated comparison scores, and within the 

range 0.7 to 0.8 of typical for mated comparison scores. 

In running of LFR, both of the identical twins were enrolled onto the Cohort watchlist; they 

were always recognised correctly and there were no cases of one of the twins being 

incorrectly recognised as the other. 

There was also a pair of fraternal twins in the Cohort. RFR and OIFR non-mated comparison 

scores between the fraternal twins were within the usual range for non-mated scores. 

Neither twin featured as a Rank-2 candidate for their sibling.  

7 EVALUATION RESULTS – OPERATOR INITIATED FACIAL RECOGNITION 

7.1 METHODOLOGY 

The methodology for evaluating OIFR is very similar to that for RFR. The differences being 

that: 

a) Only the ‘OIFR-style’ images taken with the Samsung XcoverPro mobile phone 

were used as Probe Images. The reference image database combines the 

enrolled Filler dataset, and the enrolled ‘Custody-style’ Cohort images as in the 

case for RFR. 

b) The NEC matching program was configured to return just the top 6 matches.  

7.2 ACCURACY  

For every probe image submitted for OIFR the correct reference was returned at Rank 1 

(i.e., as the top match). This is the best possible performance. 

TPIROIFR, 178 400, 1, 0 = 100 %.  

It follows that the OIFR TPIR is identical at 100 % for all demographic groups and there is no 

demographic variation in TPIR and the OIFR TPIR performance is equitable. 
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7.3 LOW SCORING MATED COMPARISONS & HIGH-SCORING NON-MATED 

COMPARISONS 

Excluding matches between identical twins, in the full set of OIFR identification searches the 

highest non-mated comparison score was 0.653. Five OIFR identification searches returned 

the correct reference image at Rank 1, though with a mated comparison score below this 

value (0.55-0.64). In four of the cases, features of the face and eyes were obscured by 

reflections in the subjects’ glasses. In the fifth case due to the angle of the sun there were 

dark shadows in the eye-sockets. In the operational OIFR use-case the operator taking the 

photograph might seek to take a further image of the subject when such face-image quality 

issues arise. 

The OIFR use case currently operates without a face-match threshold, but had a face-match 

threshold of 0.66 been set, then with our OIFR probe images, and with the Cohort enrolled, 

all but these 5 cases would have been recognised at Rank 1, and if the Cohort subject is not 

enrolled onto the reference image database, no candidates would have been returned for 

the subject (except in the case of the identical twins). 

8 EVALUATION RESULTS – LIVE FACIAL RECOGNITION 

8.1 METHODOLOGY 

8.1.1 Collection of LFR video featuring Cohort 

Cohort subjects were seeded into to the Crowd flow over the course of the operational LFR 

deployments. These deployments were running with an operational watchlist, which did not 

feature the Cohort. 

At the street location of the LFR system, start and endpoints for the repeat walks by Cohort 

subjects through the zone of recognition (Recognition Opportunities) were selected such that 

a round trip through the zone of recognition back to the start point should take at least one 

minute. To prevent multiple alerts from a single recognition opportunity, the Neoface 

algorithm is configured such that once an individual is alerted, a second alert within 30 

seconds is ignored.  

To count and log timings of the Cohort recognition opportunities, each Cohort subject had 

been issued with a lanyard and badge showing their unique reference number (URN) as a 

number and a barcode. Scanning the barcodes logged the URN and time of scan to a 

spreadsheet. 

At the LFR location Cohort subjects were briefed: 

a) To ensure that they walked through the zone of recognition of the LFR systems. 

b) To walk as they would normally; there was not a need to look directly at the 

camera, but not to be looking down at their mobile phone while walking towards 

the camera.7 

c) To avoid bunching into one large group. It was suggested that they might walk in 

pairs and allowed to converse.  

 
7 While it is operationally realistic that some of the crowd intentionally or accidentally avoid showing their face to 
the LFR system, the focus of the evaluation was on the accuracy and equitability of the LFR for those faces 
processed by the system.  
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d) Cohort subjects were instructed to have their lanyard-badge barcode scanned for 

each walk through the zone of recognition. 

We did not prohibit or suggest the wearing of caps, sunhats or sunglasses, glasses. The 

wearing of sunglasses and hats was typical for the non-cohort public passing the LFR 

system. 

8.1.2 Enrolment of Cohort and Filler watchlists 

In conjunction with the LFR deployment, face images of the types listed in Table 2 were 

collected from the Cohort. These included ‘custody image’ style photographs. For subjects 

that normally wear glasses, photographs were taken both with and without glasses. 

Enrolment of Cohort subjects onto a Cohort watchlist used the custody-style photographs 

without glasses. These photographs were taken at a high resolution (6000 x 4000 pixels, 

with approximately 700 pixels between the eyes) and were cropped and downsized (to 

approximately 200 pixels between eyes) to meet requirements for watchlist enrolment (max 

300 pixels between eyes).  

A Filler watchlist was enrolled of the full Filler dataset. (Filler images averaged approximately 

130 pixels between eyes.) 

8.1.3 Offline running of LFR 

The LFR video footage was provided after the deployment as a series of 30 minute .mp4 

files from each camera. This allowed the video to be run retrospectively on the Neoface V4 

system replicating the live video stream but using the Cohort and Filler watchlists.  

The collected LFR videos were run against Cohort and Filler watchlists at a range of face-

match thresholds 0.56 to 0.64 spanning the Neoface default setting of 0.60. 

In addition to the face-match threshold, the algorithm has configurable settings controlling 

face detection, (based on proprietary measures for face reliability, face quality score, face 

frontal score, minimum and maximum pixels between eye centres). Good quality frontal face 

images of sufficient size give the most accurate identification results, but the strictest 

settings may mean that some faces go undetected by the system. Relaxing the criteria for 

face detection increases the number of faces to be processed for comparison which may 

improve the true recognition rate but may also increase the false match rate. The increased 

computational workload may mean that fewer frames of video can be processed in real-time 

operation.  

8.1.4 Face detection parameters 

In this evaluation we first ran the LFR videos without adjusting face detection thresholds 

from the Neoface software default settings. Our results at these settings showed an anomaly 

in the recognition performance at the Cardiff deployment. The extreme heat on 13th August 

caused the LFR cameras to malfunction. In order to continue the deployment with minimum 

delay, the failing system was replaced with a second single camera system but without the 

normal processes of optimising camera and zone of recognition settings. Our initial results 

showed a significantly lower True Recognition Rate for the replacement system, and 

inspection of the video footage showed that face images were smaller and less ‘frontal’ than 

before the change. Accordingly, the affected LFR videos were re-run with face detection 

settings adjusted to allow for face images of a smaller size and with greater divergence from 

a frontal pose. The change improved accuracy to the levels prior to the camera malfunction.  
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Investigation into the effects of altering face detection settings was also carried out for 

processing the LFR video of the four London deployments. Here the potential values for 

‘Face reliability score’ and ‘Face frontal score’ were limited by requirements for real-time 

operation on the servers used. The changes made led to an improvement in TPIR. However, 

we observed that some of the additional faces found are of poorer quality and more liable to 

falsely match, increasing the FPIR.  

8.1.5  Determination of performance  

For determination of the False Positive Identification Rate, LFR videos were run against the 

Filler watchlist emulating the Live Facial Recognition process but using the saved videos in 

place of the live video feed. The resulting ‘Match Details Report’ produced by the system 

lists all the Crowd and Cohort matches against the Filler watchlist at the threshold setting. 

The Match Details Report was inspected to determine which of the matches are of a Cohort 

subject matched to a Filler reference image. This determination was aided by: 

a) the barcode scanned timings of Cohort recognition opportunities,   

b) timing information derived from the Match Details Report, 

c) images of the Cohort taken on the street, 

d) the green lanyard with URN badge normally visible in the captured face image 

shown in the Match Details Report. 

Matches between Crowd and Filler were disregarded in the evaluation, as no ‘ground truth’ 

is available to establish which of these matches are correct.  

For determination of the True Positive Identification Rate, LFR videos were run against the 

combined Filler and Cohort watchlists. The recognitions logged in the Match Details Report 

were then compared against the log of barcode scans to determine how many of Cohort 

subject’s recognition opportunities resulted in their correct recognition, and how many times 

they were missed. 
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8.2 ACCURACY 

Table 5 — TPIR and FPIR by threshold setting 

Face-
match 
threshold  

Face 
detection 
settings 

Observed  
TPIR 

Observed  
FPIR 

FPIR anticipated 
under operational 
measures: 
Watchlist 10k 

FPIR anticipated 
under operational 
measures 
Watchlist: 1k 

T  TPIR 178400, 1, T FPIR 178000, T FPIR 10000, T FPIR 1000, T 

0.64 (a) 79 % 0.00 % < 0.004 % < 0.001 % 

0.62 (a) 82 % 0.05 % < 0.004 % < 0.001 % 

0.60 (a) 85 % 0.25 % 0.014 % 0.002 % 

0.60 (b) 89 % 0.30 % 0.017 % 0.002 % 

0.58 (a) 88 % 0.48 %  0.027 %  0.003 % 

0.56 (a) 94 % 1.15 % 0.065 % 0.007 % 

Notes: 

     TPIR 178400, 1, T  based on 4000 mated recognition opportunities 

     FPIR 178000, T    based on 4000 non-mated recognition opportunities 

     FPIR 10000, T & FPIR 1000, T estimates based on scaling results on the 178k watchlist to 10k and 1k  

Face detection settings (a)  
     London deployments: Face Reliability 0.80, Face Frontal Score: 0.4,   Eyes Min Distance 60, Face Roll 30 

     Cardiff deployment:    Face Reliability 0.80, Face Frontal Score: 0.3,   Eyes Min Distance 40, Face Roll 30 

Face detection settings (b)  
     London deployments: Face Reliability 0.75, Face Frontal Score: 0.35, Eyes Min Distance 60, Face Roll 30 

     Cardiff deployment:    Face Reliability 0.80, Face Frontal Score: 0.3,   Eyes Min Distance 40, Face Roll 30 

Table 5 shows the observed True Positive and False Positive Identification Rates, 

aggregated over the video from all five LFR deployments, and at face-match thresholds 

ranging from 0.56 to 0.64. Over this threshold range the True Recognition Rate ranges from 

79% to 94%.  

At a face-match threshold of 0.64, the software produced no false positives against the 

watchlist of 178,000 Filler images. At threshold 0.62, two non-mated recognition 

opportunities (by the same individual) gave a false positive. At threshold 0.60, ten non-mated 

recognition opportunities generated false positives (increasing to twelve with the revised face 

detection settings).  

The evaluation watchlist of 178,000 images is much larger than that used in operational 

deployments: all MPS LFR deployments to date have used watchlists smaller than 10000. 

With a watchlist of 10,000 rather than 178,000 face images the FPIR should reduce by a 

factor of 17.8. Thus, in an operational setting with a watchlist of 10,000 face images and a 

face-match threshold of 0.60, the anticipated False Alert Rate (FPIR 10000, 0.6) is 0.017 %8 

(approximately 1 in 6000), and at face-match threshold of 0.62 the anticipated False Alert 

Rate (FPIR 10000, 0.62) is 0.004 % (approximately 1 in 25000). This would equate to one or 

two false alerts per LFR deployment day were the crowd numbers similar to those of the 

deployments used in this study.  

These accuracy levels are a considerable improvement on that reported for previous 

versions of the Neoface software (with watchlist size between 2000 and 4000, averaged 

over four deployments, TPIR ≈ 72 % and FPIR ≈ 0.1 % (1 in 1000). [5]). 

 
8 Sometimes it is easier to comprehend FPIR when expressed as a ratio e.g., “1 in 6000” than when expressed 

as a percentage, in this case “0.017%”.     x% = 1 in (100  x)  
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8.3 DEMOGRAPHIC VARIATION IN FALSE POSITIVE IDENTIFICATION RATE  

Table 6 — Number of Cohort subjects with false positive by Gender, Ethnicity & Age 

Face-match threshold 
Face-detection settings FPIR Female Male Asian Black White 

Age 
<21 

Age 
21-30 

Age 
31-42 

Age 
>42 

0.64 (a) 0.00 % 0 0 0 0 0 0 0 0 0 

0.62 (a) 0.05 % 1 0 0 1 0 0 1 0 0 

0.60 (a) 0.25 % 2 4 2 4 0 0 5 1 0 

0.60 (b) 0.30 % 2 5 4 3 0 0 7 0 0 

0.58 (a) 0.48 % 7 8 4 11 0 2 9 3 1 

0.56 (a) 1.15 % 16 17 8 22 3 7 18 7 1 

Recognition opportunities:  
gender, ethnicity & age 
balance   51% 49% 26% 29% 45% 26% 26% 24% 24% 
Notes: 
 Watchlist size:178,000 
 Recognition opportunities: 4000 

Table 6 shows the demographic of the Cohort subjects falsely matched to Filler images at 

the tested face-match thresholds.  

At face-match thresholds of 0.64 and higher there were no false positives. 

At face-match thresholds of 0.62 and 0.60 the number of subjects with a false positive is 

small, and a statistically significant imbalance between demographics is not shown. 

At face-match thresholds of 0.58 and 0.56 we observe that false positives are not uniform 

between demographic groups. In particular, the number of false positives is 

disproportionately higher for Black subjects than for Asian or White subjects; this 

demographic variation in FPIR178000, 0.56 is statistically significant (p < 0.01). 
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8.4 DEMOGRAPHIC VARIATION IN TRUE POSITIVE IDENTIFICATION RATE  

Table 7 — True Positive Identification Rate by demographics and other factors 

Demographic TPIR S
ta

ti
s
ti

c
a
ll
y

 

S
ig

n
if

ic
a
n

t 

p-value 

All Cohort subjects 89 %   

Gender    
Female 87% no  
Male 90 % no  

Ethnicity    
Asian 91 % no  
Black 86 % no p = 0.144 
White 89 % no  

Ethnicity & Gender    
Asian – Female 91 % no  
Asian – Male 90 % no  
Black – Female 83 % no p = 0.051 
Black – Male 90 % no  
White – Female 89 % no  
White – Male 88 % no  

Age     
< 21 years 84 % Yes p = 0.037 
21-30 years 87 % no  
31-42 years 91 % no  
> 42 years 93 % Yes p = 0.009 

Height     
< 164 cm 86 % no p = 0.157 
164-170 cm 87 % no  
171-178 cm 90 % no  
> 178 cm 91 % no p = 0.116 

Other factors TPIR S
ta

ti
s
ti

c
a
ll
y

 

S
ig

n
if

ic
a
n

t 

p-value 

    

LFR Deployment    
Jul 07 – Oxford St 90 % no  
Jul 14 – Oxford St 91 % no  
Jul 16 – Oxford St 83 % Yes p = 0.017 
Jul 28 – Piccadilly 89 % no  
Aug 13 – Cardiff 94 % Yes p = 0.003 

Crowd density    
People walking toward    
camera per minute    
< 71  91 % Yes p = 0.005 
> 70  85 % Yes p = 0.005 

 

Notes: 
 
TPIR = TPIR 178400, 1, 0.60 

 
Configuration parameter settings: 
Face-match threshold: 0.60 
Face Reliability:       0.75 (London) 0.8 (Cardiff) 
Face Frontal Score: 0.35 (London) 0.3 (Cardiff) 
Eyes Min Distance:   60 (London) 40 (Cardiff) 
Face Roll: 30 

Table 7 shows the observed variation in the True Recognition Rate for different demographic 

subgroups and other factors of interest at a face-match threshold of 0.6. A t-test (Welch’s 

unequal variance t-test) was used to determine whether demographic differences in 

performance are statistically significant at the 0.05 significance level. Table 7 also shows 

computed p-values for cases where the difference (higher or lower TPIR) is statistically 

significant, cases close to the 0.05 significance threshold, and outliers in each demographic 

or environmental category. 

8.4.1 Ethnicity and Gender 

At a face-match threshold of 0.6, the ethnicity-gender group with the best TPIR was the 

Asian-Female group, and the poorest TPIR was for the Black-Female group. However, the 

observed differences in TPIR by gender, by ethnicity, and by ethnicity & gender combined 

were not statistically significant at the 0.05 significance level. 

• The demographic variation in TPIR between Black females (M = 0.83, SD = 0.26) 

and the other ethnicity-gender demographics (M = 0.90; SD = 0.20) was not 

significant (t(71.7) = 1.98; p =.051) 
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8.4.2 Age 

The observed TPIR was significantly lower for those aged 20 or below (M = 0.84; SD = 

0.25), than for those aged 21 and over (M = 0.90; SD = 0.19), (t(143.1) = 2.11; p =.037). 

However, this age effect on performance is confounded with the effect of congestion in the 

Zone of Recognition. Most of the subjects in the under-20 age category were Police Cadet 

volunteers attending the deployment on 16 July. This was also the deployment in which the 

zone of recognition was the most congested. We discuss this further in Section 8.4.3.  

The observed TPIR for those aged over 42 (M = 0.93; SD = 0.17) was significantly higher 

than for those aged between 21 and 42 (M = 0.89; SD = 0.2), (t(231.9) = 2.11; p = 0.036). 

8.4.3 Crowdedness of zone of recognition, and subject height 

The observed TPIR when crowd density was above 70 (M = 0.85, SD = 0.25) was 

significantly higher than that when crowd density was below 70 (M = 0.91, SD = 0.15), 

(t(315.0) = 2.86, p = 0.005). 

It also appears that subject height is an important factor when the zone of recognition is 

crowded. The supposition is that shorter subjects are more likely than taller subjects to be 

occluded or partly occluded in the camera field of view when the zone of recognition is 

crowded.  

On the most crowded day 16 July, the observed TPIR for subjects shorter than 170 cm 

(median height) (M = 0.77, SD = 0.31) was significantly lower than that for subjects taller 

than 170 cm (M = 0.91, SD = 0.17), (t(86.5) = 2.69, p = 0.009). The lower performance of the 

under 20’s is therefore assessed to be due to both demographic and environmental factors, 

these being a combination of subject age and as a result subject height, and crowdedness in 

the zone of recognition. 

9 DISCUSSION 

9.1 ARE DEMOGRAPHIC PERFORMANCE VARIATIONS SIMILAR FOR LFR, RFR AND 

OIFR?   

The same face matching algorithm is used for LFR, RFR, and OIFR and in the evaluation 

using the same Cohort individuals and same reference image sets, the findings on 

demographic performance variation are very similar. Due to the similarity, it may be possible 

to use the bulk RFR software and a set of Cohort data to assess the FPIR equitability of a 

specific watchlist prior to LFR deployment. 

Table 8 — Demographic of subjects with high non-mated comparison scores in RFR testing  

Non-mated comparison score   Female Male Asian Black White 
Age 
<21 

Age 
21-30 

Age 
31-42 

Age 
>42 

score ≥ 0.66 0 0 0 0 0 0 0 0 0 

score ≥ 0.64 1 0 0 1 0 0 1 0 0 

score ≥ 0.62 1 1 1 1 0 0 2 0 0 

score ≥ 0.60 1 3 2 2 0 1 3 0 0 

score ≥ 0.58 5 4 3 5 1 4 4 0 1 

score ≥ 0.56 11 6 4 11 2 5 9 2 1 

Identification searches: 
gender, ethnicity & age balance 51% 49% 28% 26% 46% 21% 28% 26% 25% 
Notes: Watchlist size:178,000; Non-mated identification searches: 3,943 
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Table 8 shows the demographics for high-scoring non-mated comparison scores arising 

from RFR testing, and we note that the demographic distribution is very similar to Table 6 

showing the demographic distribution of LFR false positives. The majority of non-mated 

comparison scores at threshold 0.56 arose from probe images and recognition opportunities 

of subjects of Black ethnicity.  

9.2 TPIR VARIATION IN PERFORMANCE & EQUITABILITY 

In Section 8.4 demographic variation in performance was examined at the default face-

match threshold of 0.6. At different thresholds the TPIR values can change for each 

demographic subgroup, and the statistically significant cases can vary.  

9.3 FPIR EQUITABILITY 

Equitability is dependent on the face-match threshold settings and on the size and 

demographic composition of the LFR watchlist or RFR reference database. 

The demographic variation in the non-mated score distribution does not affect equitability if 

settings are such that the chance of a false alert is very low. However, if settings allow for a 

higher number of false alerts, these are likely to occur disproportionately within Black and 

Asian ethnicities.  

9.4 EFFECT OF REFERENCE DATASET/WATCHLIST SIZE AND COMPOSITION ON 

FPIR 

The size and composition of the watchlist tested in the study is useful for revealing 

demographic variation in performance of the algorithm, but equitability should be judged on a 

watchlist more typical of an operational deployment.  

The candidates lists and comparison scores output by the batch RFR facial comparison 

program provide data to enable an estimation of FPIR of the Cohort probe dataset against 

subsets of the reference database of a specified size and demographic profile.  

In identification systems configured to produce multiple candidates (such as RFR) Selectivity 

is the average number of candidates returned in a non-mated identification transaction 

where the comparison score exceeds the face-match threshold. Selectivity and FPIR differ at 

low thresholds but converge at high thresholds as false positives become rarer. 

We can calculate Selectivity separately for each Gender-Ethnicity component of the Filler 

dataset: 

 SELFILLER(T) = SELAsian_F(T) + SELBlack_F(T) + SELWhite_F(T) +  

  SELAsian_M(T) + SELBlack_M(T) + SELWhite_M(T) 

and then scale each component in accordance with the specified size and demographic 

profile of the operational reference database, e. g., the scaling factor for SELAsian_F(T) is: 

number of Asian Female reference images for operational watchlist 

number of Asian Female reference images in the Filler dataset 

Summing the scaled components then calculates an average of number of candidates 

returned based on the specified demographic profile. 

Applying this process to the RFR results for identification searches of Cohort Probes (of 

each demographic in turn) against the entire Filler dataset provides an estimate of the FPIR 

by demographic for the notional MPS watchlist (in Table 9) and SWP watchlist (in Table 10).  
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Note that when the observed selectivity is zero, or very low, the anticipated FPIR is given as 

‘< 1 in 10,000’ or ‘< 1 in 100,000’: there are insufficient data points to support lower 

estimates.  

Table 9 – Selectivity and estimated FPIR by probe demographic for notional MPS Watchlist  

 Asian 
Female 

Asian 
Male 

Black 
Female 

Black 
Male 

White 
Female 

White 
Male 

Face match 
threshold: 0.66 

0 
< 1 in 10,000 

0 
< 1 in 10,000 

0 
< 1 in 10,000 

0 
< 1 in 10,000 

0 
< 1 in 10,000 

0 
< 1 in 10,000 

Face match 
threshold: 0.64 

0 
< 1 in 10,000 

0 
< 1 in 10,000 

0.00003 
< 1 in 10,000 

0 
< 1 in 10,000 

0 
< 1 in 10,000 

0 
< 1 in 10,000 

Face match 
threshold: 0.62 

0 
<1 in 10,000 

0.00011 
1 in 9,200 

0.00003 
< 1 in 10,000 

0 
<1 in 10,000 

0 
<1 in 10,000 

0 
<1 in 10,000 

Face match 
threshold: 0.60 

0 
<1 in 10,000 

0.00022 
1 in 4,600 

0.00021 
1 in 4,700 

0.00023 
1 in 4300 

0 
<1 in 10,000 

0 
<1 in 10,000 

Face match 
threshold: 0.58 

0.00001 
<1 in 10,000 

0.00033 
1 in 3,000 

0.00048 
1 in 2,000 

0.00046 
1 in 2,100 

0 
<1 in 10,000 

0.00017 
1 in 5,800 

Face match 
threshold: 0.56 

0.00008 
<1 in 10,000 

0.00098 
1 in 1,000 

0.00109  
1 in 920 

0.00093 
1 in 1,000 

0.00004 
<1 in 10,000 

0.00017 
1 in 5,800 

Notes: 

• Notional MPS Watchlist: watchlist size 10,000 with demographic profile based on MPS arrest data 

• In the table selectivity is shown as decimal, and estimated FPIR shown as ratio 

In Table 9 we see that for the size 10,000 notional MPS watchlist at thresholds above 0.6 the 

extent of demographic variation in FPIR is quite limited. However, at threshold 0.56 the 

demographic variation observed for the full Filler dataset persists and, depending on 

numbers and demographic composition of the crowd, could show a noticeable effect on 

outcomes.  

Table 10  – Selectivity and estimated FPIR by probe demographic for notional SWP Watchlist 

 Asian 
Female 

Asian 
Male 

Black 
Female 

Black 
Male 

White 
Female 

White 
Male 

Face match 
threshold: 0.66 

0 
<1 in 100,000 

0 
<1 in 100,000 

0 
<1 in 100,000 

0 
<1 in 100,000 

0 
<1 in 100,000 

0 
<1 in 100,000 

Face match 
threshold: 0.64 

0 
<1 in 100,000 

0 
<1 in 100,000 

0.000000 
<1 in 100,000 

0 
<1 in 100,000 

0 
<1 in 100,000 

0 
<1 in 100,000 

Face match 
threshold: 0.62 

0 
<1 in 100,000 

0.000002 
<1 in 100,000 

0.000000 
<1 in 100,000 

0 
<1 in 100,000 

0 
<1 in 100,000 

0 
<1 in 100,000 

Face match 
threshold: 0.60 

0 
<1 in 100,000 

0.000003 
<1 in 100,000 

0.000002 
<1 in 100,000 

0.000003 
<1 in 100,000 

0 
<1 in 100,000 

0 
<1 in 100,000 

Face match 
threshold: 0.58 

0.000000 
<1 in 100,000 

0.000005 
<1 in 100,000 

0.000004 
<1 in 100,000 

0.000006 
<1 in 100,000 

0 
<1 in 100,000 

0.000031 
1 in 32,000 

Face match 
threshold: 0.56 

0.000012 
1 in 86,000 

0.000015 
1 in 67000 

0.000008 
<1 in 100,000 

0.000012 
1 in 84,000 

0.000007 
<1 in 100,000 

0.000031 
1 in 32,000 

Notes: 

• Notional SWP Watchlist: watchlist size 1,000 with demographic profile based on SWP arrest data 

• In table selectivity is shown as decimal, and estimated FPIR shown as ratio 

Table 10 shows the demographic variation in performance changes for the demographic 

profile and size of the notional SWP watchlist. Moreover, even at face-match threshold 0.56, 

the FPIR is now below 1 in 30,000 for each ethnicity-gender, and the demographic variation 

is likely to be inconsequential unless the number of crowd subjects in the deployment is 

somewhat in excess of 32,000.  

9.5 RETROSPECTIVE FACIAL RECOGNITION PERFORMANCE ON CHALLENGING 

FACIAL IMAGES 

The perfect results from the testing of Retrospective Facial Recognition are very promising. 

It should be noted that all the face images were taken by test staff, or Cohort in the case of 
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selfies, and when a facial image taken considered unsatisfactory by the photographer, e.g., 

out of focus, motion blur, subject eyes shut, generally a second image would be taken. For 

evaluation of demographic equitability this was appropriate for the images need to be 

consistent across demographics. It should be acknowledged that using images of lower 

quality, or lower resolutions, may not achieve the same level of performance.  

9.6 RECOGNITION AGAINST SAME-DAY IMAGE 

Note that, in the evaluation, images were collected from Cohort subjects over one or two 

days. This is typical for such evaluations due to limitations on project duration, and the 

difficulty of obtaining a stable corpus of test subjects who can participate over an extended 

time-period. Other factors being equal, TPIR rates for facial recognition against a recent 

photograph are likely to be better than TPIR against historic photographs. In terms of 

demographic differentials in performance this means that the study has not been able to 

address the effects of ‘template ageing’.  

9.7 SUGGESTIONS FOR FURTHER INVESTIGATIONS 

In the report we have made comment some issues where further information may be able to 

extend knowledge on how facial recognition systems perform in more challenging cases: 

• effects of poor-quality video and video compression on Live Facial Recognition 

performance 

• extending testing of Retrospective Facial Recognition to facial images of lower quality 

or resolution 

• consideration of the effects of template ageing on performance and any demographic 

effects. 

Policing may wish to consider how these issues relate to their use cases for RFR and LFR, 

and the nature of images they plan to use. Further controls or testing may be appropriate for 

facial images of lower quality or resolution. Some testing may be able to reuse the facial 

images and video collected for this study, downgrading the images in a controlled manner. 

The Filler dataset contained some cases where there were two or more time-separated 

facial images of data subjects. Such data might allow for assessment of demographic effects 

in template ageing.  

9.8 TEST CORPUS ARISING FROM THE STUDY 

The facial images and video footage collected in the study are to be provided to the 

Metropolitan Police Service along with associated ground truth metadata to enable reuse of 

the data for future testing of facial recognition systems. 
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10 TERMINOLOGY AND ABBREVIATIONS 

Candidate: Image of a person from the watchlist or reference database returned as result of 

an identification search. 

Cohort: Subjects recruited to provide a corpus of facial images and video for recognition in 

the evaluation. 

Comparison score: Numerical value of the similarity between compared probe and 

reference facial images. 

Crowd: Members of the public passing through the zone of recognition of the LFR system.  

Equitable:  Equitability of an operational deployment requires that differences, where any 

exist, in the outcomes for the subjects from different demographics should be 

inconsequential.   

Face-match threshold: The comparison score value above which the compared images will 

be considered to match. 

FPIR: False Positive Identification Rate (for LFR) is the proportion of recognition 

opportunities of subjects who are not on the watchlist which return a (false positive) 

match against a candidate on the watchlist. 

 FPIR(N, T) = 

Num. non-mated recognition opportunities that return a match against
a candidate on the watchlist

Num. non-mated recognition opportunities
  

 where N represents the number of images on the watchlist, and T the face-match 

threshold.  

Filler dataset: Dataset drawn from MPS holdings of custody images and used to 

supplement Cohort reference images to provide large reference dataset for the 

evaluation. 

LFR:  Live Facial Recognition 

Mated: A mated identification search is one in which the subject in probe image also has a 

reference image in the reference database.  A mated recognition opportunity is one 

where the subject walking though the LFR zone of recognition has an image in the 

LFR watchlist. Similarly, a mated comparison score is produced from comparisons of 

two face images of the same individual. 

Non-mated:  A non-mated identification search is one in which the subject in probe image 

does not have a reference image in the reference database. A non-mated recognition 

opportunity is one where the subject walking though the LFR zone of recognition 

does not have a facial image in the LFR watchlist. Similarly, a non-mated comparison 

score is produced from comparison of face images of different individuals.  

MPS: Metropolitan Police Service 

NEC: NEC Software Solutions – the company providing the Neoface facial recognition 

technology evaluated in this report 

OIFR:  Operator Initiated Facial Recognition  

Probe image: A facial image that is searched against a watchlist or reference database.  
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Rank: The rank of a candidate facial image is its position in the set of candidates returned 

by an identification search listed in decreasing order of similarity to the probe (i.e., 

the Rank-1 candidate is the best matching candidate). 

Reference image: A facial image in the watchlist or reference database.  

Recognition opportunity: The period when a subject moves through the zone of 

recognition of an LFR system with their face visible to the LFR camera. 

RFR: Retrospective Facial Recognition 

SEL: Selectivity (for RFR) the average number of candidates returned in a non-mated 

identification transaction for which the candidate comparison score exceeds the face-

match threshold. 

 SEL(N, T) = 

Total Num. candidates returned with score above threshold T in the set
of non-mated identification transactions

Num. non-mated identification transactions
  

 where N represents the number of images on the watchlist, and T the face-match 

threshold. 

SWP: South Wales Police 

TPIR: True Positive Identification Rate (for LFR): the proportion of mated recognition 

opportunities that are correctly identified. 

TPIR(N, 1, T) = 
Num. mated recognition opportunities correctly identified

Num. mated recognition opportunities
  

where N represents the number of images on the watchlist, and T the face-match 

threshold (the ‘1’ denotes that LFR only considers the top match.) In policing this is 

often referred to as the True Recognition Rate. 

TPIR: True Positive Identification Rate (for RFR & OIFR) is the proportion of mated 

identification searches that include the mated reference among the candidates 

returned.  

TPIR(N, R, T) = 

Num. mated identification searches where the mated reference is
among the candidates returned

Num. mated recognition opportunities
  

 where N represents the number of images on the watchlist, R the number of best 

matching candidates returned and T the face-match threshold (T=0 if no threshold is 

applied). 

Watchlist: A set of reference images (of individuals of interest to policing) against which a 

probe image is searched. 

Zone of recognition: Three-dimensional space within the field of view of the Live Facial 

Recognition camera and in which the imaging conditions for robust facial recognition 

are met. 
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